60 research outputs found

    Factors of Influence on the Performance of a Short-Latency Non-Invasive Brain Switch: Evidence in Healthy Individuals and Implication for Motor Function Rehabilitation.

    Get PDF
    Brain-computer interfacing (BCI) has recently been applied as a rehabilitation approach for patients with motor disorders, such as stroke. In these closed-loop applications, a brain switch detects the motor intention from brain signals, e.g., scalp EEG, and triggers a neuroprosthetic device, either to deliver sensory feedback or to mimic real movements, thus re-establishing the compromised sensory-motor control loop and promoting neural plasticity. In this context, single trial detection of motor intention with short latency is a prerequisite. The performance of the event detection from EEG recordings is mainly determined by three factors: the type of motor imagery (e.g., repetitive, ballistic), the frequency band (or signal modality) used for discrimination (e.g., alpha, beta, gamma, and MRCP, i.e., movement-related cortical potential), and the processing technique (e.g., time-series analysis, sub-band power estimation). In this study, we investigated single trial EEG traces during movement imagination on healthy individuals, and provided a comprehensive analysis of the performance of a short-latency brain switch when varying these three factors. The morphological investigation showed a cross-subject consistency of a prolonged negative phase in MRCP, and a delayed beta rebound in sensory-motor rhythms during repetitive tasks. The detection performance had the greatest accuracy when using ballistic MRCP with time-series analysis. In this case, the true positive rate (TPR) was ~70% for a detection latency of ~200 ms. The results presented here are of practical relevance for designing BCI systems for motor function rehabilitation

    Detection of movement related cortical potentials from EEG using constrained ICA for brain-computer interface applications

    Get PDF
    The movement related cortical potential (MRCP), a slow cortical potential from the scalp electroencephalogram (EEG), has been used in real-time brain-computer-interface (BCI) systems designed for neurorehabilitation. Detecting MPCPs in real time with high accuracy and low latency is essential in these applications. In this study, we propose a new MRCP detection method based on constrained independent component analysis (cICA). The method was tested for MRCP detection during executed and imagined ankle dorsiflexion of 24 healthy participants, and compared with four commonly used spatial filters for MRCP detection in an offline experiment. The effect of cICA and the compared spatial filters on the morphology of the extracted MRCP was evaluated by two indices quantifying the signal-to-noise ratio and variability of the extracted MRCP. The performance of the filters for detection was then directly compared for accuracy and latency. The latency obtained with cICA (-34 ± 29 ms motor execution (ME) and 28 ± 16 ms for motor imagery (MI) dataset) was significantly smaller than with all other spatial filters. Moreover, cICA resulted in greater true positive rates (87.11 ± 11.73 for ME and 86.66 ± 6.96 for MI dataset) and lower false positive rates (20.69 ± 13.68 for ME and 19.31 ± 12.60 for MI dataset) compared to the other methods. These results confirm the superiority of cICA in MRCP detection with respect to previously proposed EEG filtering approaches

    Spinal plasticity in robot-mediated therapy for the lower limbs.

    Get PDF
    Robot-mediated therapy can help improve walking ability in patients following injuries to the central nervous system. However, the efficacy of this treatment varies between patients, and evidence for the mechanisms underlying functional improvements in humans is poor, particularly in terms of neural changes in the spinal cord. Here, we review the recent literature on spinal plasticity induced by robotic-based training in humans and propose recommendations for the measurement of spinal plasticity using robotic devices. Evidence for spinal plasticity in humans following robotic training is limited to the lower limbs. Body weight-supported (BWS) robotic-assisted step training of patients with spinal cord injury (SCI) or stroke patients has been shown to lead to changes in the amplitude and phase modulation of spinal reflex pathways elicited by electrical stimulation or joint rotations. Of particular importance is the finding that, among other changes to the spinal reflex circuitries, BWS robotic-assisted step training in SCI patients resulted in the re-emergence of a physiological phase modulation of the soleus H-reflex during walking. Stretch reflexes elicited by joint rotations constitute a tool of interest to probe spinal circuitry since the technology necessary to produce these perturbations could be integrated as a natural part of robotic devices. Presently, ad-hoc devices with an actuator capable of producing perturbations powerful enough to elicit the reflex are available but are not part of robotic devices used for training purposes. A further development of robotic devices that include the technology to elicit stretch reflexes would allow for the spinal circuitry to be routinely tested as a part of the training and evaluation protocols

    Influence of attention alternation on movement-related cortical potentials in healthy individuals and stroke patients.

    Get PDF
    OBJECTIVE: In this study, we analyzed the influence of artificially imposed attention variations using the auditory oddball paradigm on the cortical activity associated to motor preparation/execution. METHODS: EEG signals from Cz and its surrounding channels were recorded during three sets of ankle dorsiflexion movements. Each set was interspersed with either a complex or a simple auditory oddball task for healthy participants and a complex auditory oddball task for stroke patients. RESULTS: The amplitude of the movement-related cortical potentials (MRCPs) decreased with the complex oddball paradigm, while MRCP variability increased. Both oddball paradigms increased the detection latency significantly (p<0.05) and the complex paradigm decreased the true positive rate (TPR) (p=0.04). In patients, the negativity of the MRCP decreased while pre-phase variability increased, and the detection latency and accuracy deteriorated with attention diversion. CONCLUSION: Attention diversion has a significant influence on MRCP features and detection parameters, although these changes were counteracted by the application of the laplacian method. SIGNIFICANCE: Brain-computer interfaces for neuromodulation that use the MRCP as the control signal are robust to changes in attention. However, attention must be monitored since it plays a key role in plasticity induction. Here we demonstrate that this can be achieved using the single channel Cz

    Exploration of neural correlates of movement intention based on characterisation of temporal dependencies in electroencephalography

    Get PDF
    Brain computer interfaces (BCIs) provide a direct communication channel by using brain signals, enabling patients with motor impairments to interact with external devices. Motion intention detection is useful for intuitive movement-based BCI as movement is the fundamental mode of interaction with the environment. The aim of this paper is to investigate the temporal dynamics of brain processes using electroencephalography (EEG) to explore novel neural correlates of motion intention. We investigate the changes in temporal dependencies of the EEG by characterising the decay of autocorrelation during asynchronous voluntary finger tapping movement. The evolution of the autocorrelation function is characterised by its relaxation time, which is used as a robust marker for motion intention. We observed that there was reorganisation of temporal dependencies in EEG during motion intention. The autocorrelation decayed slower during movement intention and faster during the resting state. There was an increase in temporal dependence during movement intention. The relaxation time of the autocorrelation function showed significant (p < 0.05) discrimination between movement and resting state with the mean sensitivity of 78.37 ± 8.83%. The relaxation time provides movement related information that is complementary to the well-known event-related desynchronisation (ERD) by characterising the broad band EEG dynamics which is frequency independent in contrast to ERD. It can also detect motion intention on average 0.51s before the actual movement onset. We have thoroughly compared autocorrelation relaxation time features with ERD in four frequency bands. The relaxation time may therefore, complement the well-known features used in motion-based BCI leading to more robust and intuitive BCI solutions. The results obtained suggest that changes in autocorrelation decay may involve reorganisation of temporal dependencies of brain activity over longer duration during motion intention. This opens the possibilities of investigating further the temporal dynamics of fundamental neural processes underpinning motion intention

    Adaptive Brain-Computer Interface with Attention Alterations in Patients with Amyotrophic Lateral Sclerosis

    No full text

    Reflex and non-reflex torque responses to stretch of the human knee extensors

    No full text

    Classification of EEG signals to identify variations in attention during motor task execution

    Get PDF
    Background Brain-computer interface (BCI) systems in neuro-rehabilitation use brain signals to control external devices. User status such as attention affects BCI performance; thus detecting the user’s attention drift due to internal or external factors is essential for high detection accuracy. New method An auditory oddball task was applied to divert the users’ attention during a simple ankle dorsiflexion movement. Electroencephalogram signals were recorded from eighteen channels. Temporal and time-frequency features were projected to a lower dimension space and used to analyze the effect of two attention levels on motor tasks in each participant. Then, a global feature distribution was constructed with the projected time-frequency features of all participants from all channels and applied for attention classification during motor movement execution. Results Time-frequency features led to significantly better classification results with respect to the temporal features, particularly for electrodes located over the motor cortex. Motor cortex channels had a higher accuracy in comparison to other channels in the global discrimination of attention level. Comparing with existing methods Previous methods have used the attention to a task to drive external devices, such as the P300 speller. However, here we focus for the first time on the effect of attention drift while performing a motor task. Conclusions It is possible to explore user’s attention variation when performing motor tasks in synchronous BCI systems with time-frequency features. This is the first step towards an adaptive real-time BCI with an integrated function to reveal attention shifts from the motor task
    • …
    corecore